
Spin-transfer torque in helical spin-density waves

O. Wessely,1,2,3 B. Skubic,3 and L. Nordström3

1Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
2Department of Mathematics, City University, London EC1V 0HB, United Kingdom
3Department of Physics, Uppsala University, Box 530, SE-75121, Uppsala, Sweden

�Received 12 December 2008; revised manuscript received 25 January 2009; published 30 March 2009�

The current driven magnetization dynamics of a helical spin-density wave is investigated. Expressions for
calculating the spin-transfer torque of real systems from first-principles density-functional theory are presented.
These expressions are used for calculating the spin-transfer torque for the spin spirals of Er and fcc Fe at two
different lattice volumes. It is shown that the calculated torque induces a rigid rotation of the order parameter
with respect to the spin spiral axis. The torque is found to depend on the wave vector of the spin spiral and the
spin polarization of the Fermi surface states. The resulting dynamics of the spin spiral is also discussed.
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I. INTRODUCTION

The spin-transfer torque �STT� provides a means of ma-
nipulating the magnetization of a material using a current.
The effect was proposed from theoretical considerations by
Slonczewski1 and Berger2 and has attracted a lot of attention
due to its potential use in applications where a magnetic state
is altered by a current as opposed to traditional techniques
involving magnetic fields.

Most theoretical and experimental work on the STT con-
cerns layered magnetic structures where the STT appears as
a consequence of angular momentum conservation as a cur-
rent traverses an interface between two regions of nonparal-
lel magnetization. Recently3 we have shown that a STT also
occurs in systems with a helical spin-density wave �SDW�.
This was shown by a first-principles calculation of the STT
for a bulk rare-earth system �Er� in its low-temperature heli-
cal spin spiral �SS� structure. The effect of the current in-
duced STT in Er is a rigid rotation of the SS order parameter.
This phenomenon is a bulk effect in contrast to STT in lay-
ered systems where the STT mainly occurs close to the in-
terfaces between the layers.

In this paper we present a more general discussion on the
current induced torque in a SS. First the effect is illustrated
using a one-dimensional �1D� model of a SS. In the subse-
quent section present first-principles calculations of the STT
for three real systems, Er and fcc Fe or �-Fe at two different
lattice volumes. Previous first-principles calculations have
shown that both Er and �-Fe have helical SDWs.4,5 In many
other respects these two systems are very different. Erbium is
one of several rare-earth elements that exhibit a helical SDW
and where the ordering is driven by a nesting between par-
allel sheets of the Fermi surface �FS�. Iron belongs to the
3d-transition metals where SDWs are less frequent. The fcc
phase of Fe, which is the phase where a SS order has been
found both in experiments and theory, has only been stabi-
lized at very special conditions, and it is believed that the
helical SDW is the combined result of several parts of the
FS. For the one-dimensional model, as well as the considered
real systems, we find that an applied current induces a STT
generating a rigid rotation of the spiral order. With this the-
oretical prediction, different types of potential applications of

the STT can be imagined, such as current driven oscillators
with tunable frequencies. The current driven spin dynamics
for such a device is investigated in Sec. VII.

II. THEORY

For a system with a helical SDW, the direction of the local
magnetization rotates around the SS quantization axis as one
moves in the direction of the SS wave vector. Without loss of
generality, we here consider the rotation axis to be parallel to
the SS wave vector, except when explicitly stated, and will
refer to it as the SS axis. Although we here consider helical
SDWs, the results are valid for cycloidal SDWs as well. A
SS is characterized by its SS wave vector q and its cone
angle �, which is the angle between the SS axis and the local
magnetization; see Fig. 1. In this section we first consider a
one-dimensional model of a SS, where the spin currents and
STT are calculated analytically. We then discuss how accu-
rate first-principles calculations of the STT can be per-
formed.

A. STT in a 1D model of a spin spiral

As a simple one-dimensional single band model of a SS
system, we consider independent particles in a spin-
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FIG. 1. Local magnetization direction of a helical spin-density
wave. The spin-density wave is characterized by the SS wave vector
q, the cone angle �, and the rotation angle �=q ·r.
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dependent potential. The spin-dependent potential is chosen
such that the ground state of the system has a helical mag-
netization M=Mm̂ where

m̂ = �sin � cos qz,sin � sin qz,cos �� . �1�

Here, the SS wave vector q=qẑ and � is the cone angle. The
single particle Schrödinger or Kohn-Sham equation for such
a model system takes the form

�−
�2

2me

�2

�z2 +
U

2
�sin ��cos qz�x + sin qz�y� + cos ��z� − ��

�	 = 0,

where U is the exchange splitting, me is the electron mass, �
is the Planck constant, �x , �y , �z are the Pauli matrices,
and � is the one particle energy. This equation can be solved
analytically6 and the eigenfunctions are the so-called gener-
alized Bloch states,

	k = �	nk�z,↑�
	nk�z,↓�

� = eikz�cos��k/2�e−iqz/2

sin��k/2�eiqz/2 � . �2�

For the above wave function the direction of the spin ŝ ro-
tates around the SS axis, with rotation angle �=qz, at an
angle �k with respect to the SS axis,

ŝ�z� = �sin �k cos qz,sin �k sin qz,cos �k� . �3�

Moreover, the spin of an electron moving along the SS axis
will precess around the axis. One can thus expect that the
electron exerts a STT perpendicular to the SS axis and the
direction of its spin ŝ. Note that the single electron cone
angle �k and the cone angle � of the SS, see Fig. 1, in general
are different. In one dimension, the charge current j, induced
by applying an electric field, is a scalar given by

j�z� = − 
f
e�

me
Re�	kF

� i
�

�z
	kF

− 	−kF

� i
�

�z
	−kF

� , �4�

where 
f is the change in occupation at the Fermi level due
to the electric field, kF is the Fermi wave vector, and e is the
elementary charge. In a similar way, the spin current Q due
to a weak electric field is a vector given by

Q�z� = − 
f
�2

2me
Re�	kF

� i
�

�z
�	kF

− 	−kF

� i
�

�z
�	−kF

� . �5�

From the spin current rate of change of angular momentum
within an infinitesimal region of the system can be calcu-
lated. The rate of change or spin-transfer torque on the re-
gion between z0 and z0+dz is given by the spin flux into the
region

�J

�t
�z0� = Q�z0� − Q�z0 + dz� = 	−

�Q

�z
	

z0

dz . �6�

Both the spin flux �J /�t and the current j depend on the
change in occupation of the states at the Fermi level caused
by the applied electric field. These two quantities are linked
by the expression

�J

�t
= Cj , �7�

which defines the torque current tensor C. The torque current
tensor is in three dimensions a matrix, but becomes a vector
in a one-dimensional system, where also the current vector is
reduced to a scalar. For our model system, the torque current
tensor can be calculated by inserting the Fermi Bloch states,
	kF

and 	−kF
from Eq. �2� into Eqs. �4� and �5�, resulting in

C = 	 �Q

�z
	

z0

dz/j�z0� = a��,kF�
− q sin�qz0�
q cos�qz0�

0
�dz , �8�

where the first factor, a�� ,kF�, depends on the spiral cone
angle � and the Fermi wave vector kF. For planar spin spi-
rals, where �=� /2, the factor reduces to a simple function of
the single electron cone angle �k of the states at the Fermi
level given by

a��/2,kF� =
�

2e

sin �kF

1 − �q/2k�cos �kF

. �9�

A comparison between Eq. �1� and Eq. �8� shows that the
current induced torque, in our one-dimensional model, is per-
pendicular to the magnetization direction and lies in the
plane of rotation of the SS, thus causing the SS to rotate with
respect to the SS axis. It can also be seen from Eq. �8� that
the magnitude of the STT is governed by the length of the SS
wave vector q and the factor a�� ,kF�.

B. STT for a real system

The STT for a real system can be calculated by general-
izing the expressions for the charge and spin currents in one
dimension to three dimensions. In three dimensions can the
currents induced by an external electric field, to linear order
in the field, be calculated from a FS integral. For a multiband
system must the contribution from all bands crossing the
Fermi level be taken into account. In Sec. II A was a model
system and the STT on an infinitesimal region at an arbitrary
point of the system considered. For a real material, where
most of the angular momentum is localized on the atoms is
the time evolution of the atomic moment governed by the
STT on the corresponding atom. The torque on an atom is
given by the spin flux into a sphere surrounding the atom.
For a single electron state with band index n and wave vector
k, the flux into a sphere of radius R is given by

− �
0

� �
0

2�

Qnk · r̂R sin �d�d� =
�Jnk

�t
. �10�

In three dimensions is the one electron spin current tensor

Qnk�r� = Re	nk
† �r�s � v	nk�r�� , �11�

where s= �� /2��, and v= �−i� /me��. The total spin current
is the sum of the spin currents from all occupied states. An
external electric field E induces a nonequilibrium spin cur-
rent by changing the occupation of the states 
f at the FS.
The change in occupation number 
f can be calculated using
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the relaxation time approximation and semiclassical Boltz-
mann theory,7


f�k� = − 
��nk − �F�
�e

�
�k�nk · E , �12�

where � is the electron relaxation time and �nk is the band
energy. The total nonequilibrium torque on an atom can be
calculated from a FS integral,

�J

�t
=

− VC�e

�2��3�
�

n
�

FS

�Jnk

�t
��k�nk · E�

dSnk

��k�nk�
, �13�

where VC is the volume of the system and a summation is
performed over all bands crossing the Fermi level. The above
equation defines a linear relation between the torque and the
external field,

�J

�t
= ��

n

AnE . �14�

A similar relation can be obtained for the charge current
density and the electric field,

j = ��
n

BnE =
1

�2��3

�e2

�2 �
n
�

FS
�k�nk��k�nk · E�

dSnk

��k�nk�
,

�15�

where Bn is the conductivity tensor for band n. By combin-
ing Eqs. �14� and �15� is a linear relation between the torque
and the current density obtained, where the unknown elec-
tron relaxation time � has been cancelled,

�J

�t
= ��

n

An���
m

Bm�−1
j = Cj . �16�

The above equation defines the spin current tensor C in three
dimensions.

C. STT from the augmented plane-wave (APW) method

The wave functions used in Sec. II B to calculate the
torque current tensor C can be obtained from first-principles
electronic structure calculations using spin-density-
functional theory. Several electronic structure methods use
basis sets where space is divided into muffin-tin spheres sur-
rounding the atoms and an interstitial region. This division is
introduced in order to simplify the calculation of the intra-
and interatomic behavior of the wave functions. When cal-
culating the STT, a natural choice is to use the atomic aug-
mentation �muffin-tin� sphere as the surface for evaluating
the STT on the atoms. We now illustrate more in detail how
the calculation may be carried out within the augmented
plane wave method �APW�. The APW expansion can be
written as a sum of plane waves

	nk�r� = �
G
�ank,Gei�G+k−q/2�r

bnk,Gei�G+k+q/2�r � , �17�

where G are the reciprocal lattice vectors. The plane-wave
coefficients ank and bnk are obtained from the first-principles
calculation. The spin flux into a sphere with radius R cen-
tered at an atom at site rm is for plane waves given by the
expression

�
0

� �
0

2�

Qnk · r̂R sin �d�d� =
�R2

me
Re �

G,G�

− i4��†sank,G
� ank,G�e

−i�G−G��rmj1��G − G��R��G� + k − q/2� · �G − G�̂�

+ †s�ank,G
� bnk,G�e

−i�G−G�−q�rmj1��G − G� − q�R��G� + k + q/2� · �G − G� − q̂�

+ �†sbnk,G
� ank,G�e

−i�G−G�+q�rmj1��G − G� + q�R��G� + k − q/2� · �G − G� + q̂�

+ �†s�bnk,G
� bnk,G�e

−i�G−G��rmj1��G − G��R��G� + k + q/2� · �G − G�̂�� , �18�

where j1 is the first spherical Bessel function and , � are the
up and down spinors, respectively. With this expression
evaluated it is straightforward to calculate the STT using
Eqs. �10� and �13�.

III. MATERIALS WITH SPIN SPIRAL MAGNETIC ORDER

Long ranged magnetic order in form of helical SDWs
exists in several types of materials. Maybe the most famous

is the heavy rare-earth elements. They have similar valence
electron structure, resulting in similar chemical structure, and
all the trivalent elements order in the hcp lattice structure
with similar lattice volumes. The main difference along the
series lies in the filling and magnetic moment of the local-
ized 4f-electron shell. The FS of Er which is typical for the
series has a strong nesting feature, i.e., two large parallel
sheets of the FS. The formation of a SDW with a wave
vector equal to the nesting vector allows for hybridization
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removing these parts of the FS opening up a gap at the Fermi
level lowering the total energy of the system. Anisotropies in
the system determine whether the type of SDW preferred in
the system is a helical SDW, conical SDW, or a longitudinal
SDW.

Helical SDWs also exist for various 3d-transition com-
pounds, however, among the elemental 3d-transition metals
the magnetic structures are less exotic at ambient conditions.
It was previously shown that if certain general criteria are
met, helical SDWs are formed in the transition metal series.
This means that at conditions slightly different from ambient,
spin spirals occur naturally indicating that this type of mag-
netic order is less exotic than one could believe. An example
of such a system is �-Fe, the fcc phase of iron. Experimen-
tally �-Fe has been stabilized as precipitates in a Cu matrix.
The experimental magnetic ground-state structure was found
to be a SS with q=2� /a�0.1,0 ,1� where a=6.76 a.u. Sev-
eral theoretical studies4,5,8 have mapped out the ground-state
magnetic structure of �-Fe which was found to be very vol-
ume sensitive. In contrast to the rare-earth systems where the
SS state is driven by nesting between two parallel sheets of
the FS, the SS state of �-Fe is not promoted by a single FS
nesting vector. Instead there is a net energy gain from many
parts of the FS given by the hybridization by a SS vector.

IV. ELECTRONIC STRUCTURE CALCULATION

All the materials specific parameters for Er and �-Fe used
for the calculation of the torque current tensor C were ob-
tained from first-principles density-functional theory. The
calculations were made using the full-potential augmented
plane-wave plus local orbitals �APW+lo� method as de-
scribed in Ref. 9. For Er, the calculations were performed in
the same manner as in Refs. 3 and 10 and for �-Fe the
calculations were performed in the same way as in Refs. 5
and 8. The local spin-density approximation �LSDA� as pa-
rametrized by von Barth and Hedin was used without any
shape approximation to the noncollinear magnetization; i.e.,
charge and magnetization densities as well as their conju-
gates potentials are allowed to vary freely in space both re-
garding magnitude and direction. For Er, a set of 12�12
�8 k points was used for converging the electron density
and for Fe we used a set of 20�20�20 k points. The SS
was treated using the generalized Bloch theorem. The Er
calculation was performed with the 4f electrons treated as
spin polarized core electrons and we used the experimental
Er hcp lattice parameters �a=6.73 a.u. and c=10.56 a.u.�.
For Er, we calculate a large number of SS wave vectors, q
=� /c�0,0 ,q� in the first Brillouin zone of the hcp lattice,
along the out-of-plane direction between � and A. The total
energy for these calculations is presented in Fig. 2. There is
an energy minimum for q=0.40 which corresponds to the
ground-state SS structure of Er. For Fe we perform calcula-
tions at two lattice volumes. At a lattice constant of a
=6.82 a.u., corresponding to the lattice constant of Cu, we
do a series of calculations for q1=2� /a�0,0 ,q�, between �
and W in the first Brillouin zone, and an energy minimum is
found for q=0.59 �see middle panel in Fig. 2�. At a reduced
lattice constant of a=6.66 a.u. we do a series of calculations

for q2=� /a�w ,0 ,2�, between W and X, where there is a
weak local energy minimum at w=0.48. This latter minimum
corresponds to a spiral wave vector which is close to the
experimental SS of �-Fe. Note that q2 is nonparallel to the
SS rotation axis which is in the ẑ direction for all three
calculations.

V. RESULTS

In this section we present the results of the STT calcula-
tions for the three SS systems treated in the previous section.
The one electron spin current tensor Qnk was calculated us-
ing Eq. �18� and the Kohn-Sham eigenfunctions obtained
from the first-principles calculation. The first Brillouin zone
was covered by a 41�41�41 k-point mesh, in order to
accurately evaluate the FS integrals in Eqs. �13� and �15�.
The conductance tensor, B=�mBm, was as expected, found
to be diagonal for all three considered systems.

The torque current tensor C was calculated for Er having
a SS with wave vector q=� /c�0 0 0.4�. We found that for
an Er atom situated at a site with magnetization direction
�100�, the spin current tensor
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FIG. 2. The top panel shows the total energy of Er per hcp unit
cell for SS wave vectors from � to A. The middle panel shows the
total energy per atom of �-Fe for SS vectors from � to X in the
larger lattice volume. The bottom panel shows the total energy per
atom of �-Fe for SS vectors from X to W in the smaller lattice
volume.
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C =
�

e
0.0 0.0 0.0

0.0 0.0 − 0.5

0.0 0.0 0.0
��Å2� .

From the structure of the C tensor, it can be seen that for a
current in the �001� direction, a torque is induced in the �010�
direction. Since the torque is perpendicular to the local mag-
netization and lies in the SS rotation plane, we conclude that
a current along the SS axis causes a rigid rotation of the SS
around the SS axis. Note that the C tensor would have more
than one nonzero component if the coordinate system was
not chosen to coincide with the local magnetization and the
SS axis.

For �-Fe with the larger volume in the q1
=2� /a�0,0 ,0.59� spiral state, the torque current tensor,
evaluated for an atom with magnetization direction �100�,

C =
�

e
0.0 0.0 0.0

0.0 0.0 − 1.4

0.0 0.0 0.0
��Å2� .

Also in this case we conclude that a current along the SS axis
causes a rigid rotation of the SS. In this system, the torque,
for the same current density, is found to be nearly three times
larger than for Er. We will return to a discussion on the
magnitude of the torque later in this section.

Finally we calculated the STT in �-Fe with reduced vol-
ume, where the SS wave vector q2=� /a�0.48,0 ,2� is non-
parallel to the spin rotation axis ẑ. We found that the torque
current tensor for an atom with magnetization in the �100�
direction is given by

C =
�

e
0.0 0.0 0.0

0.6 0.0 0.0

0.0 0.0 0.0
��Å2� .

The structure of the torque current tensor for this system
differs from the previous two systems. Here, a current in the
�100� direction is required to produce a rotation of the SS.
The STT from a current in the �001� direction vanishes since
�-Fe with q2=� /a�0.48,0 ,2� is antiferromagnetic in the
�001� direction.

VI. DISCUSSION

In general, the STT depends on a balance between the size
of the SS wave vector and the spin polarization of the con-
duction electrons at the FS. Some insight into the origin of
the STT on the single electron level can be obtained by con-
sidering the semiclassical expression for the spin current11

Q�z� =
�

2
ŝ�z�

j

e
. �19�

If the semiclassical spin current is combined with Eq. �8� one
obtains the following expression for the torque current ten-
sor:

C =
�

2e
	 � ŝ�z�

�z
	

z0

dz =
�

2e
sin �kF
− q sin �qz0�

q cos �qz0�
0

�dz .

�20�

The above equation gives the same result as the quantum
mechanical calculation of C in Sec. II A, if the denominator
of the factor a in Eq. �9� is equal to one, which is approxi-
mately true if �q /2k�cos �kF

is small. Semiclassically, the
maximum spin transferred per electron, for a given value of
q, to an atomic layer is given by �� /2�ql where l is the
interlayer distance. This maximum can be achieved if the
single electron cone angle �kF

is equal to � /2. For Er and
�-Fe with the larger volume is the semiclassical maximum of
the spin transfer, with the given value of q, equal to 0.3� and
0.9�, respectively. A more accurate value for the average
spin transferred per electron to an atom is obtained by mul-
tiplying the torque current tensor with e /A where A is the
area per atom in the direction of the current. For Er, where
the area per atom in the �001� direction A=a2�3 /2, the spin-
transferred per electron is 0.05�. For �-Fe, the area per atom
in the �001� direction is a2 /2 and the spin-transferred per
electron is 0.2�, for the larger volume. Hence, the spin-
transfer torques for Er and �-Fe �larger volume� obtained
from the first-principles calculations are only 16% and 22%,
respectively, of the semiclassical maximum. This is partially
due to the fact that the cone angle �kF

of the conduction
electrons is less than � /2.

Another reason for the reduced STT is that contributions
from different bands partly cancel each other. The contribu-
tions from the individual bands to the STT are given by the
An and Bn tensors shown in Table I. For Er there are four
bands that cross the FS and the dominant element in the An
tensors is their �An�23 elements. As shown in Table I �a�, the
STT from band three is four times larger and in the opposite
direction to the STT from band one and two. For �-Fe �larger
volume� there are four bands crossing the Fermi level, where
the dominating contribution to the STT comes from the third
band, see Table I �b�. For �-Fe with the smaller volume there
are five bands crossing the Fermi level and the dominant
element in the An tensors is their �An�21 elements. As shown
in Table I �c�, the largest contribution to the STT is here
coming from the fifth FS. Finally we would like to note that
semiclassically the maximal spin transfer per conduction
electron is � /2, which only can be obtained if both ql
=� /2 and �kF

=� /2. Another route to high spin transfer is to
try to reduce the denominator in the expression for the a
factor in Eq. �9�. The a factor becomes large for small Fermi
surfaces where q /k is large.

VII. DYNAMICS

We will for our SS systems represent the uniform magne-
tization of an atomic plane perpendicular to the SS axis by a
unit vector m̂ in the direction of the magnetization. The time
evolution of m̂ is phenomenologically described by the
Landau-Lifshitz-Gilbert �LLG� equation12,13
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dm̂

dt
= � − m̂ �

dm̂

dt
. �21�

The first term � is the total torque exerted on the layer and
the second term is the Gilbert damping term with damping
constant . The systems under consideration are all having a
helical SDW with an easy-plane or hard-axis anisotropy. The
hard axis is directed along the SS axis and helps maintain the
planar structure of the SS. For such systems is the total
torque � a sum of a current induced STT and a torque re-
sulting from the hard-axis anisotropy. Both of these torques
are perpendicular to the magnetization m̂ and the SS axis
which here is considered to be in the ẑ direction. Equation
�21� can therefore for this system can be written as

dm̂

dt
= Am̂ � ẑ − m̂ �

dm̂

dt
, �22�

where

A�j,�� =
qja��,kF�

sin �
+ bm̂ · ẑ . �23�

The first term in the above equation is due to the STT and the
factor a�� ,kF� was introduced in Eq. �8�. The b in the second

term is the strength of the hard-axis anisotropy. Equation
�22� is in spherical coordinates, see Fig. 1, given by

d�

dt
�1 + 2� = − A�j,�� �24�

and

d�

dt
�1 + 2� = − A�j,��sin � . �25�

Equation �24� describes a rigid rotation of the SS due to the
current induced torque where the angular velocity, as a func-
tion of the current j, is given by −A�j ,�� / �1+2�. It can be
seen from Eq. �25� that the effect of the Gilbert damping is to
change the cone angle of the SS. Eventually, the spiral will
reach a steady state with a cone angle �0 given by

qja��0,kF�
sin �0

= − b cos �0, �26�

when the current induced torque and the anisotropy torque
balance each other. At this point in time, also the rotational
motion of the magnetic moments with respect to the SS axis
stops. The polar angle � will thus, when a current j is passed
along the SS axis, change by

�� = −
1

1 + 2�
�/2

�0

A�j,���d�

dt
�−1

d� �27�

or

�� =
1


�ln�tan

�

4
� − ln�tan

�0

2
�� , �28�

before the spiral reach the steady state with cone angle
�0. The SS will return to a planar state if the current is
switched off after the steady state is reached. During the
reversal, the spiral rotates in the opposite direction perform-
ing the same number of rotations as required to reach the
steady state.

The current induced torque has, for slowly varying mag-
netization, been described by introducing an adiabatic and a
nonadiabatic term in the LLG equation.14–17 The adiabatic
term, which for a SS whose axis is along ẑ takes the form
�m̂ /�z, has in Eq. �22� been replaced by the STT component
of A�j ,��. A nonadiabatic torque term proportional to m̂
� ��m̂ /�z� could also be introduced in Eq. �22�. The main
effect of such a torque would be a modification of Eq. �25�,
which determines the dynamics of the cone angle �. A nona-
diabatic torque would add a term to the right-hand side of
Eq. �25� which could decrease or even change the sign of
d� /dt. The effect of in-plane anisotropy is discussed in Ref.
3, where it is suggested that the current needs to overcome a
certain critical current before the spiral starts to rotate.

VIII. SUMMARY AND CONCLUSIONS

We have shown in general that the current through a SS
induces a rotation of the spins, where the angular velocity
depends on the magnitude of the current. The size of the STT

TABLE I. The elements of the An and Bn tensors that mainly
contribute to the C tensor, see Eq. �16�.

a: Er

n
�� /e��An�23

�Å eV�
��2 /e2��Bn�33

�eV /Å�

1 0.01 0.006

2 0.01 0.01

3 −0.04 0.03

4 −0.008 0.007

b: Fe q1

n
�� /e��An�23

�Å eV�
��2 /e2��Bn�33

�eV /Å�

1 −0.002 0.002

2 0.01 0.02

3 −0.1 0.07

4 −0.005 0.002

c: Fe q2

n
�� /e��An�21

�Å eV�
��2 /e2��Bn�11

�eV /Å�

1 0.005 0.006

2 0.02 0.01

3 0.02 0.02

4 −0.05 0.05

5 0.09 0.08
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has been analyzed in terms of the spin transfer per conduc-
tion electron and we conclude that the total STT depends on
the spin polarization of the electrons, the SS wave vector,
and how contributions from different bands coincide. The
dynamics of the SS has been calculated including the effects
of anisotropies and damping. For a system with a hard-axis
anisotropy along the SS axis, the damping leads to a steady
state where the rotation eventually stops.
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